EuroCoinProblem¶
Import¶
Effect of Different Priors¶




outcome = 'H'*140+'T'*110
euro1 = Pmf.from_seq(range(101), name='uniform')
euro1.plot()
euro2 = TriangularPrior()
euro2.plot()
for data in outcome:
euro1.update(likelihood_euro, data)
euro2.update(likelihood_euro, data)
euro1.plot()
euro2.plot()
plt.legend()
decorate_euro("Posterior Distribution")
euro1.mean() -euro2.mean()
Swammping the priors
More or less agree for posterior
if you start with probability zero , you will always get zero
Avoid assigning probability to zero on everything
Estimated proportions
Interactive¶
def compare(n_h = 140, n_t=110, t_peak=50, n_range=101):
outcomes = 'H'*n_h+'T'*n_t
euro1 = Pmf.from_seq(range(n_range), name='uniform')
euro2 = TriangularPrior(t_peak, n_range)
euro1.plot(color='steelblue', label='uniform prior', linestyle='--')
euro2.plot(color='red', label='triangular prior', linestyle='--')
for data in outcomes:
euro1.update(likelihood_euro, data)
euro2.update(likelihood_euro, data),
euro1.plot(color='steelblue', label='uniform posterior')
euro2.plot(color='red', label='triangular posterior')
plt.legend()